Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule.

نویسندگان

  • Junji Iwahara
  • Charles D Schwieters
  • G Marius Clore
چکیده

Paramagnetic relaxation enhancement (PRE) measurements on (1)H nuclei have the potential to play an important role in NMR structure determination of macromolecules by providing unique long-range (10-35 A) distance information. Recent methodological advances for covalently attaching paramagnetic groups at specific sites on both proteins and nucleic acids have permitted the application of the PRE to various biological macromolecules. However, because artificially introduced paramagnetic groups are exposed to solvent and linked to the macromolecule by several freely rotatable bonds, they are intrinsically flexible. This renders conventional back-calculation of the (1)H-PRE using a single-point representation inaccurate, thereby severely limiting the utility of the (1)H-PRE as a tool for structure refinement. To circumvent these limitations, we have developed a theoretical framework and computational strategy with which to accurately back-calculate (1)H-PREs arising from flexible paramagnetic groups attached to macromolecules. In this scheme, the (1)H-PRE is calculated using a modified Solomon-Bloembergen equation incorporating a "model-free" formalism, based on a multiple-structure representation of the paramagnetic group in simulated annealing calculations. The ensemble approach for (1)H-PRE back-calculation was examined using several SRY/DNA complexes incorporating dT-EDTA-Mn(2+) at three distinct sites in the DNA, permitting a large data set comprising 435 experimental backbone and side-chain (1)H-PREs to be obtained in a straightforward manner from 2D through-bond correlation experiments. Calculations employing complete cross-validation demonstrate that the ensemble representation provides a means to accurately utilize backbone and side-chain (1)H-PRE data arising from a flexible paramagnetic group in structure refinement. The results of (1)H-PRE based refinement, in conjunction with previously obtained NMR restraints, indicate that significant gains in accuracy can be readily obtained. This is particularly significant in the case of macromolecular complexes where intermolecular translational restraints derived from nuclear Overhauser enhancement data may be limited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement.

Recent advances in the use of paramagnetic relaxation enhancement (PRE) in structure refinement and in the analysis of transient dynamic processes involved in macromolecular complex formation are presented. In the slow exchange regime, we show, using the SRY/DNA complex as an example, that the PRE provides a powerful tool that can lead to significant increases in the reliability and accuracy of...

متن کامل

Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.

A new approach to NMR solution structure refinement is introduced that uses paramagnetic effects on nuclear chemical shifts as constraints in energy minimization or molecular dynamics calculations. Chemical shift differences between oxidized and reduced forms of horse cytochrome c for more than 300 protons were used as constraints to refine the structure of the wild-type protein in solution and...

متن کامل

Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy

Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein-protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein...

متن کامل

A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data.

The measurement of (1)H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the para...

متن کامل

Probing surface accessibility of proteins using paramagnetic relaxation in solid-state NMR spectroscopy.

Paramagnetic Relaxation Enhancement (PRE) can be used to accelerate NMR data acquisition by reducing the longitudinal proton relaxation time T(1) in the solid state. We show that the presence of paramagnetic compounds in the bulk solvent induces a site-specific relaxation in addition to local dynamics, which is dependent on the surface accessibility of the respective amide proton in the protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 126 18  شماره 

صفحات  -

تاریخ انتشار 2004